ISSN 1070-4280, Russian Journal of Organic Chemistry, 2008, Vol. 44, No. 12, pp. 1824–1830. © Pleiades Publishing, Ltd., 2008. Original Russian Text © Ya.P. Nizhnik, V.P. Andreev, B.Z. Belashev, 2008, published in Zhurnal Organicheskoi Khimii, 2008, Vol. 44, No. 12, pp. 1851–1857.

Molecular Complexes of 4-Nitropyridine and 4-Nitroquinoline N-Oxides with Boron Trifluoride and Hydrogen Chloride as Intermediates in S_NAr Reactions

Ya. P. Nizhnik^{*a*}, V. P. Andreev^{*a*}, and B. Z. Belashev^{*b*}

^a Petrozavodsk State University, pr. Lenina 33, Petrozavodsk, 185910 Russia e-mail: andreev@psu.karelia.ru

^b Karelian Research Center, Russian Academy of Sciences, ul. Pushkinskaya 11, Petrozavodsk, 185910 Russia

Received October 2, 2006

Abstract—Complexation of 4-nitropyridine *N*-oxides with *v*- (BF₃, HCl) and π -acceptors (tetracyanoethylene, chloranil, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, 7,7,8,8-tetracyanoquinodimethane) activates the nitro group to nucleophilic replacement by chlorine. Adducts formed by 4-nitropyridine and 4-nitroquinoline *N*-oxides with boron trifluoride and hydrogen chloride were studied by IR spectroscopy. It was shown that these complexes belong to the *n*,*v* type and that the donor–acceptor interaction therein involves the oxygen atom of the *N*-oxide group.

DOI: 10.1134/S1070428008120191

Nucleophilic replacement in the series of heteroaromatic N-oxides underlies synthesis of various pyridine and quinoline derivatives. However, despite activating effect of the N-oxide group, S_NAr reactions with weak nucleophiles are slow. For example, in the reaction of 4-nitroquinoline N-oxides with Et₃BuNCl as source of chloride ions at 40°C the yield of the corresponding replacement product, 4-chloroquinoline N-oxide did not exceed 3% even after 72 h [1]. The use of π - (tetracyanoethylene [2, 3]) or v-acceptors (BF₃) [1], AlCl₃ [4], H^+ [5]) as catalysts makes it possible to complete replacement of the nitro group by chlorine in 30 min. Addition of boron trifluoride-ether complex to a mixture containing 4-nitroquinoline N-oxide and Et₃BuNCl in acetonitrile ensures reaction completion in 1 h at room temperature. Analogous result is obtained when solid 4-nitroquinoline N-oxide-BF3 adduct is used. These data indicate that the nucleophilic replacement process involves molecular complex of the *N*-oxide with BF_3 . Presumably, the reaction of *N*-oxide **IIa** with hydrogen chloride also occurs under very mild conditions due to intermediate formation of **Ha**·HCl. Such intermediates have not been reported, and we believe that their study will provide better understanding of the mechanism of S_NAr reactions in the series of heteroaromatic N-oxides and that activation by external acceptor can be extended to other heterocyclic systems.

The goal of the present work was to compare the efficiency of activation of S_NAr reactions of 4-nitropyridine *N*-oxides **Ia–Id** and 4-nitroquinoline *N*-oxides **IIa** and **IIb** by external acceptor and examine properties of donor–acceptor complexes of these *N*-oxides with BF₃ and HCl, which are likely to be formed as intermediates.

We have found that nucleophilic replacement of the nitro group in 4-nitropyridine *N*-oxides by chlorine is activated by electron acceptors to a much lesser extent as compared to 4-nitroquinoline *N*-oxides (Table 1). A probable reason is smaller contribution of the quinoid structure in 4-nitroquinoline *N*-oxides. Hydrogen atom in position 5 of the quinoline ring is capable of

 $A = BF_3$, H^+ , tetracyanoethylene (III), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (IV), 2,3,5,6-tetrachlorobenzoquinone (V), 7,7,8,8-tetracyanoquinodimethane (VI).

interacting with the 4-nitro group, forcing the latter to deviate from the quinoline ring plane. As a result, conjugation between the nitro group and the aromatic system becomes weaker, and the double character of the $C-NO_2$ bond decreases.

There are no crystallographic data on the structure of 4-nitroquinoline and its *N*-oxide [6]. However, a considerable torsion angle between the nitro group and aromatic ring plane is observed in 1-nitronaphthalene (23.99° for its clathrate with guanidinium biphenyldisulfonate [7]) and some its derivatives: 49.93° for 1,5-dinitronaphthalene [8], 15.40° for ammonium 2,4-dinitronaphthoxide [9], 14.66° for 1-hydroxy-2,4dinitronaphthalene-7-sulfonic acid [10], and 32.37° for 4-nitro-*N*-phenylnaphthalene-1,8-dicarboximide [11].

The reactivity of 4-nitropyridine N-oxide in the replacement of the nitro group by chlorine, activated by external acceptor, changes in the following series (Table 1): Id < Ib < Ia < Ic. Introduction of a methyl group into position 2 of molecule Ia and of two methyl groups into positions 2 and 6 strongly decelerates the substitution process in the presence of HCl, while only traces of the corresponding 4-chloropyridine N-oxides were detected in the reactions of N-oxides Ib and Id with Et₃BuNCl in the presence of BF₃ (65°C, 5 h). Presumably, methyl groups hamper interaction of the acceptor with the N-oxide group for steric reasons. Although methyl group in the 3-position of compound Ic should create steric hindrances to attack by nucleophile and reduce electrophilicity of the heteroring, the reaction with Ic is faster. This may also result from some deviation of the nitro group from the heteroring plane due to steric interaction with the substituent on C^{3} . Analogous explanation was proposed in [12] for ready replacement of the nitro group by chlorine or bromine in 3-substituted 4-nitro-1,3-dihydro-2H-imidazo[4,5-c]pyridin-2-ones.

We previously revealed a good correlation between the logarithms of the stability constants of Zn-tetraphenylporphyrin complexes with pyridine *N*-oxides and Hammett constants σ ; deviation of the point for compound **Ic** from the straight line may be rationalized in the same way [13]. In fact, according to the X-ray diffraction data, the dihedral angle between the planes passing through the nitro group and pyridine ring in

Table 1. Replacement of the nitro group in 4-nitropyridine and 4-nitroquinoline *N*-oxides by chlorine atom in aceto-nitrile at 65° C in the presence of electron acceptors^a

Compound no.	Activator	etivator Reaction time, min Yi	
Ia	BF ₃	300	30
Ic	BF_3	300	59
IIa	BF_3	30	>99
Ia	III	300	43
Ib	III	300	24
Ic	III	120	38
Id	III	300	17
IIa	III	15	37
Ia	IV	300	33
Ic	IV	300	47
IIa	IV	120	96
Ic	V	300	41
IIa	V	60	>99
Ic	VI	300	19
IIa	VI	120	39
Ia	HCl	600	73
Ib	HCl	600	18
Ic	HCl	600	94
Id	HC1	600	13
IIa	HC1	30	>99
IIb	HC1	30	>99

^a The reaction of *N*-oxide **IIa** with Et₃BuNCl in the presence of tetracyanoethylene (**III**) in the system acetonitrile–dioxane (1:1) was complete in 3 h at room temperature [3].

Compound no.	Acceptor	Yield, %	mp, °C	UV spectrum (CHCl ₃), λ_{max} , nm (log ϵ)	$\Delta\lambda$, ^a nm
Ia	_	72	159 [17]	343 (4.29)	_
	HCl	92	128	283 (3.87)	-60
	BF ₃	88	143–145	278 (3.71) sh	-65
Ib	_	76	155 [18]	347 (4.22)	_
	HCl	81	137–138	296 (3.87)	-51
	BF_3	79	127	295 (3.61) sh	-52
Ic	_	76	136–137 [19]	339 (4.27)	_
	HCl	52	82-85	285 (3.85) sh	-54
	BF_3	61	100-103	279 (3.70)	-60
Id	_	80	163–164 [20]	347 (4.25)	_
	HCl	78	143	300 (3.88)	-47
	BF_3	b	b	298 (3.73)	-49
IIa	_	67	153–154 [17]	388 (4.11)	_
	HCl	с	с	336 (3.75)	-52
	BF_3	81	127–131	332 (3.77)	-56
IIb	_	64	155–157 [17]	391 (4.03)	_
	HCl	с	с	333 (3.83)	-57
	BF_3	67	193–195	334 (3.83)	-58

Table 2. Yields, melting points, and UV spectra of complexes formed by 4-nitropyridine and 4-nitroquinoline N-oxides with HCl and BF₃

^a $\Delta \lambda = \lambda_{\max}(N \text{-}oxide) - \lambda_{\max}(N \text{-}oxide \cdot A).$

^b The complex decomposed during isolation.

^c We failed to isolate the complexes as individual substances.

N-oxide Ic is 14.68° [14] (31.98° in the complex of Ic with $ZnBr_2$ [15]).

The effect of π -acceptors as activators of nucleophilic substitution in the series of nitropyridine *N*-oxides is similar to the effect of BF₃. An exception is tetracyanoethylene (**III**) which almost equally accelerates the reactions of Et₃BuNCl with all the examined 4-nitropyridine *N*-oxides **Ia–Id** (Table 1). These findings require special consideration, taking into account that the acceptor power of **III** is much weaker than the acceptor power of quinone **IV** [16] and that the latter does not promote reaction of Et₃BuNCl with *N*-oxides **Ib** and **Id** under the above conditions.

Thus we have found that coordination of 4-nitropyridine and 4-nitroquinoline *N*-oxides with electron acceptors considerably accelerates S_NAr reactions and that the efficiency of such activation depends on the *N*-oxide structure. Therefore, in the next step of our study we synthesized probable intermediates in these reactions, i.e., complexes of *N*-oxides with HCl and BF₃, and examined their structure. Our attempts to obtain *N*-oxide **IIa** hydrohalides by reaction with hydrochloric or hydrobromic acid or gaseous hydrogen halides showed that the nitro group in **IIa** is very readily replaced by chlorine or bromine atom. For example, the replacement was complete in 15–30 min when gaseous hydrogen chloride was passed through a solution of **IIa** in chloroform at room temperature [5]. Even fast isolation (within 30 s) of the reaction product of **IIa** with gaseous HCl in a hexane-chloroform mixture gave a crystalline substance containing about 8% of the corresponding chloro derivative whose fraction continuously increased with time (20% in 24 h). Obviously, nucleophilic substitution of the nitro group by chlorine occurs even in the solid phase.

Insofar as the rate of replacement of the nitro group in nitropyridine *N*-oxides by the action of hydrogen halides is much lower than in the reactions with their quinoline analogs, we made an attempt to isolate nitropyridine *N*-oxide adducts with HCl, which were not reported previously. Unlike 4-nitroquinoline *N*-oxide, passing of hydrogen chloride over a period of 5 min through solutions of pyridine *N*-oxides **Ia–Id** in chloroform resulted in separation of stable crystalline 1:1 hydrochlorides (Table 2).

The reactions of *N*-oxides with HCl were accompanied by considerable blue shift of the long-wave absorption maximum of the initial *N*-oxide in the electronic absorption spectra with simultaneous decrease in the absorption intensity (Table 2). This is consistent with published data. According to [21], protonation of pyridine, quinoline, and isoquinoline *N*-oxides at the oxygen atom of the *N*-oxide group induces blue shift of the long-wave π - π * band [21]. Furthermore, the electronic absorption spectra of *N*-oxide Id in CH₃CN (λ_{max} 349.5 nm) and in a 1 M solution of HClO₄ in CH₃CN (λ_{max} 347 and 300 nm, respectively).

It is known that the presence of electron-donating substituents in heteroaromatic ring reduces the blue shift of the π - π * band; moreover, in some cases bathochromic shift is observed. For instance, the $\Delta\lambda$ value for protonated 2,4,6-trimethylpyridine and 4-chloro-2,6-dimethylpyridine *N*-oxides in CH₃CN is fairly small, 0.6 and -6.5 nm, respectively, but it becomes very strong in going to pyridine *N*-oxides in which the substituent is capable of conjugation with the heteroaromatic ring: $\Delta\lambda = 43.5$ and -50 nm, respectively, for protonated 4-methoxy-2,6-dimethylpyridine *N*-oxide and compound Id [22].

The IR spectrum of **Id**·HCl conforms well to that reported for 2,6-dimethylpyridine *N*-oxide hydrochloride; the spectrum contains a weak v(N-O) band from the free base at 1251 cm⁻¹ and two v(N-O) bands from the bound molecules at 1188 and 1232 cm⁻¹ [23].

The position of the v(AH) stretching vibration band in the IR spectra of salts like A-H···B, depending on the acid and base strength, can be used as an indication of hydrogen bond formation [24]. For example, the v(O-H) band in the IR spectra of N-oxide molecular complexes with a very weak hydrogen bond is located at 3000–2300 cm⁻¹ (4-nitropyridine N-oxide–4-nitrobenzoic acid complex). In going to stronger hydrogen bond (the O-H bond shortens), the absorption band shifts to lower frequencies (by 400 cm⁻¹ for the complex of 4-methoxy-2,6-dimethylpyridine N-oxide with pentachlorophenol). Complete proton transfer to the N-oxide oxygen atom leads to the reverse shift of the v(O–H) band toward higher frequencies (4-dimethylamino-2,6-dimethylpyridine N-oxide complex with *p*-toluenesulfonic acid) [25].

The IR data showed that the isolated pyridine *N*-oxide hydrochlorides are characterized by almost complete proton transfer to the oxygen atom of the $N \rightarrow O$ group. Broadened v(O–H) bands appear in the IR spectra of pyridine *N*-oxide hydrochlorides in the region 2330–1795 cm⁻¹ (Table 3). Here, in going from Ia·HCl (hydrochloride of the weakest base, $pK_a = -1.7$ [26]) to stronger bases Ib ($pK_a = -0.967$ [17]) and Ic

Compound no.	$v_{as}(NO_2)$	$v_{s}(NO_{2})$	$\nu(N \rightarrow O)$	v(OH) (B–O, B–F)
Ia	1517 v.s	1348 v.s	1272 v.s	_
Ia · HCl	1544 v.s, 1514 v.s	1348 v.s	1272 v.s, 1196 s	2178 br.s, 1930 br.s, 1794 br.s
$Ia \cdot BF_3$	1516 v.s	1348 v.s	1276 s, 1176 s	(1124 v.s), (1084 v.s), (1040 v.s)
Ib	1516 v.s	1343 v.s	1288 v.s, 1270 v.s	_
Ib · HCl	1518 v.s	1346 v.s, 1338 v.s	1286 v.s, 1270 v.s	2360 m, 2342 m
$\mathbf{Ib} \cdot \mathbf{BF}_3$	1520 s	1348 v.s	1288 s, 1272 s, 1144 s	(1092 v.s), (1048 v.s)
Ic	1510 s	1344 v.s	1264 v.s	_
Ic · HCl	1510 s	1344 v.s	1264 s	2334 br.s
$Ic \cdot BF_3$	1548 v.s	1360 s	1256 s, 1180 m, 1148 s	(1084 v.s), (1044 m)
Id	1518 v.s	1341 v.s	1274 v.s	_
Id ⋅ HCl	1543 v.s, 1522 v.s	1344 s	1281 m, 1228 m	2252 br.m, 1972 br.m, 1815 br.m
IIa	1521 v.s	1344 s	1307 v.s	_
$IIa \cdot BF_3$	1536 s, 1520 s	1344 m	1308 s, 1124 s	1084 v.s, 1054 s
IIb	1520 v.s	1344 m	1308 v.s	_
$IIb \cdot BF_3$	1548 s, 1528 s	1360 m	1308 m, 1144 v.s	(1108 v.s), (1084 v.s), (1040 s)

Table 3. IR spectra of complexes of 4-nitropyridine and 4-nitroquinoline N-oxides with HCl and BF₃

Electronic absorption spectra in chloroform of (1) *N*-oxide **IIa** ($c = 1.7 \times 10^{-4}$ M, d = 0.5 cm), complex **IIa** ·BF₃ at a concentration c of (2) 1.2×10^{-3} M (d = 0.1 cm), (3) 6.0×10^{-4} M (d = 0.1 cm), (4) 1.2×10^{-4} M (d = 0.5 cm), (5) 6.0×10^{-5} M (d = 0.5 cm), and (6) 1.2×10^{-5} M (d = 0.5 cm), and (7) *N*-oxide **IIa** in the presence of excess BF₃ ($c = 1.2 \times 10^{-3}$ M, d = 0.1 cm).

 $(pK_a = -0.97 [27])$, the broad absorption band shifts toward higher frequencies. Despite the presence of two electron-donating groups in the molecule of *N*-oxide **Id** (which should increase the basicity), the shift in the IR spectrum of **Id** ·HCl is smaller than in the spectra of **Ib** ·HCl and **Ic** ·HCl, and the absorption band is very broad (it includes three maxima).

The $v_{as}(NO_2)$ band in the spectra of $Ia \cdot HCl$ and $Id \cdot HCl$ is split into two peaks, in contrast to the only band present in the spectra of the initial *N*-oxides. No such splitting is observed in the IR spectra of $Ib \cdot HCl$ and $Ic \cdot HCl$; however, in the spectrum of $Ic \cdot HCl$ the $v_s(NO_2)$ band is doubled. This pattern may be due to hydrogen bonding between the proton linked to the *N*-oxide oxygen atom and oxygen atoms of the nitro group in the neighboring molecule. As a result, oxygen atoms in the nitro group become nonequivalent, and the $v(NO_2)$ band in the IR spectrum is split. Likewise, Hanuza et al. [28] rationalized doubling of the $v_s(NO_2)$ band in the IR spectrum of a single crystal of compound Id.

It was reported in [29] that *N*-oxide **Ia** does not form complexes with BF₃, presumably because of its low basicity. Nevertheless, we succeeded in isolating individual boron trifluoride adducts with five of the six *N*-oxides from solutions in CHCl₃, the ratio *N*-oxide– BF₃ being 1:1. An exception was the adduct with N-oxide Id, which decomposed during isolation.

In the electronic absorption spectra of the complexes with BF₃, as in the spectra of hydrochlorides, the long-wave absorption band was displaced by 50– 65 nm to shorter wavelengths, and its intensity was lower as compared to the spectra of the initial *N*-oxides. A good correlation was observed between $\Delta\lambda$ for the complexes with BF₃ and $\Delta\lambda$ for the corresponding hydrochlorides. The largest blue shift ($\Delta\lambda = -65$ nm) was found for unsubstituted pyridine *N*-oxide Ia ($\Delta\lambda =$ -60 nm for Ia·HCl), and the smallest (-49 nm), for Id (-47 nm for Id·HCl). Similar trends in the variation of the electronic absorption spectra of pyridine *N*-oxide complexes with HCl and BF₃ imply that the coordination involves the same center. Somewhat larger $\Delta\lambda$ values for the complexation with BF₃ must be noted.

The electronic absorption spectrum of a saturated solution of complex $\mathbf{Ha} \cdot \mathbf{BF}_3$ in chloroform displayed a band at λ 332 nm due to the complex and a shoulder at about λ 380 nm due to free *N*-oxide **Ha** (see figure). Dilution leads to dissociation of the complex, the band at 332 nm gradually disappears, and the final spectrum becomes identical to the spectrum of *N*-oxide **Ha**.

The complexes with BF₃ showed in the IR spectra strong broadened absorption bands in the region 1125– 1050 cm⁻¹, which were assigned to vibrations of the B–F bonds [30] and newly formed B–O bond [31]; new v(N–O) bands originating from the N \rightarrow O group bound to the acceptor also appeared at 1150–1120 cm⁻¹. The v(N–O) bands typical of the initial *N*-oxides (1264–1288 cm⁻¹) were also present in the spectra, but their intensity was lower. The v(N–O) band in the spectrum of Ic · BF₃ shifts to 1256 cm⁻¹ (1264 cm⁻¹, v.s, in the spectrum of Ic), and its intensity decreases. The observed variations in the IR spectra are consistent with coordination of the acceptor molecule at the oxygen atom of the N \rightarrow O group [26, 32].

Thus using electronic absorption and IR spectroscopy we showed that 4-nitropyridine and 4-nitroquinoline *N*-oxides form n,v-complexes with BF₃ and HCl via coordination of the acceptor at the oxygen atom of the *N*-oxide group.

EXPERIMENTAL

The IR spectra of pyridine and quinoline *N*-oxides and their complexes with electron acceptors were recorded in KBr on a Specord M-80 spectrometer. The electronic absorption spectra were measured on a Specord UV-Vis spectrophotometer. Taking into account that dissolution of the complexes in chloroform was accompanied by their dissociation into initial components, excess boron trifluoride–ether complex was added to or gaseous hydrogen chloride was passed through their solutions to obtain electronic absorption spectra.

The reaction mixtures were analyzed (qualitatively and quantitatively), and the purity of the products was checked, by HPLC using a Laboratorni Přistroje chromatograph (Praha) equipped with an UV LCD 2040 detector (λ 280 nm for 4-nitropyridine N-oxides or 335 nm for 4-nitroquinoline N-oxides); Separon SGX C_{18} column (3×150 mm); eluent acetonitrile–water, 84:16, flow rate 0.2 ml/min. A 0.05-ml portion of the reaction mixture was placed in a test tube charged with 0.45 ml of a 3% solution of trimethylamine in ethanol, and a 0.5-µl sample was withdrawn and injected. A standard reaction mixture contained 0.3 ml of acetonitrile, 0.1 mmol of N-oxide I or II, 0.1 mmol of Et₃BuNCl, and 0.02 ml of BF₃· Et₂O, 0.02 ml of concentrated hydrochloric acid, or 0.1 mmol of solid π -acceptor III–VI.

N-Oxides **Ia–Id**, **IIa**, and **IIb** were synthesized according to the procedures described in [17, 18]. Chloroform was purified by standard method [33].

4-Nitropyridine *N***-oxide complex with BF**₃. Boron trifluoride–ether complex, 0.4 ml, was added to a solution of 280 mg (0.002 mol) of 4-nitropyridine *N*-oxide in 6 ml of chloroform. The precipitate was filtered off, washed with diethyl ether (2×2 ml), and dried in air. Yield 0.366 g (88%), colorless powder, mp 143–145°C. Found, %: C 28.79; H 2.06; N 13.71. C₅H₄BF₃N₂O₃. Calculated: %: C 28.87; H 1.94; N 13.53.

Complexes of N-oxides **Ib**–**Id** with BF₃ were synthesized in a similar way. In the reactions with N-oxides **Ib** and **Id** the resulting complexes separated as oily substances which crystallized on storage.

4-Nitroquinoline *N***-oxide complex with BF**₃. Boron trifluoride–ether complex, 0.4 ml, was added to a solution of 190 mg (0.001 mol) of 4-nitroquinoline *N*-oxide in 5 ml of chloroform, the solvent was distilled off under reduced pressure, the brown oily residue was treated with 7 ml of diethyl ether, and the precipitate was filtered off, washed with 5 ml of diethyl ether, and dried in air. Yield 0.209 g (81%), light yellow powder, mp 127–131°C. Found, %: C 41.69; H 2.46; N 10.69. C₉H₆BF₃N₂O₃. Calculated, %: C 41.88; H 2.34; N 10.90. The complex of *N*-oxide **IIb** with BF_3 was synthesized in a similar way. The *N*-oxide– BF_3 ratio in the complexes was determined by titration (after preliminary hydrolysis) as described in [34].

4-Nitropyridine *N*-oxide hydrochloride. Gaseous hydrogen chloride was passed through a solution of 0.07 g (0.5 mmol) of 4-nitropyridine *N*-oxide in 2 ml of chloroform. The precipitate was separated by centrifugation and washed with chloroform (3×1 ml). Yield 0.096 g (92%), colorless powder, mp 128°C. Found, %: C 34.12; H 3.04; N 15.69. C₅H₅ClN₂O₃. Calculated, %: C 33.98; H 2.85; N 15.92.

N-Oxides **Ib**–**Id** hydrochlorides were obtained in a similar way. In the reactions with *N*-oxides **Ib** and **Id**, oily substances separated from the solution and crystallized on storage. The ratio *N*-oxide–HCl was determined by titration using Methyl Red as indicator.

REFERENCES

- 1. Andreev, V.P. and Ryzhakov, A.V., *Khim. Geterotsikl.* Soedin., 1999, p. 1443.
- 2. Ryzhakov, A.V., Vapirov, V.V., and Rodina, L.L., *Zh. Org. Khim.*, 1991, vol. 27, p. 955.
- Ryzhakov, A.V. and Rodina, L.L., *Zh. Org. Khim.*, 1994, vol. 30, p. 1417.
- Andreev, V.P. and Nizhnik, Ya.P., Russ. J. Org. Chem., 2001, vol. 37, p. 141.
- 5. Andreev, V.P., Ryzhakov, A.V., and Kalistratova, E.G. *Khim. Geterotsikl. Soedin.*, 1996, p. 516.
- Allen, F.H., Acta Crystallogr., Sect. B, 2002, vol. 58, p. 380.
- Swift, J.A., Pivovar, A.M., Reynolds, A.M., and Ward, M.D., J. Am. Chem. Soc., 1998, vol. 120, p. 5887.
- 8. Trotter, J., Acta Crystallogr., 1960, vol. 13, p. 95.
- Yatsenko, A.V., Paseshnichenko, K.A., Chernyshev, V.V., and Schenk, H., *Acta Crystallogr., Sect. C*, 2001, vol. 57, p. 397.
- Filippenko, O.S., Chuev, I.I., Leonova, L.S., Shilov, G.V., and Adoshin, S.M., *Dokl. Ross. Akad. Nauk*, 2001, vol. 376, p. 27.
- 11. Kovalevskii, A.Yu., Ponomarev, I.I., Antipin, M.Yu., Ermolenko, I.G., and Shishkin, O.V., *Izv. Ross. Akad. Nauk, Ser. Khim.*, 2000, p. 68.
- 12. Yutilov, Yu.M. and Svertilova, I.A., *Khim. Geterotsikl. Soedin.*, 1994, p. 1071.
- Andreev, V.P., Nizhnik, Ya.P., Bezruchko, D.G., and Morozov, A.K., *Russ. J. Gen. Chem.*, 2005, vol. 75, p. 1309.
- 14. Baert, F., Schweiss, P., Heger, G., and More, M., J. Mol. Struct., 1988, vol. 178, p. 29.

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 44 No. 12 2008

- Li, S.-X., Wang, Z.-M., Chen, J.-Z., and Su, W.-Y., *Chin. J. Struct. Chem.*, 1993, vol. 12, p. 35; *Chem. Abstr.*, 1994, vol. 121, no. 25450b.
- 16. Peover, M.E., J. Chem. Soc., 1962, p. 4540.
- 17. Ochiai, E., J. Org. Chem., 1953, vol. 18, p. 534.
- 18. Talik, T. and Talik, Z., *Roczn. Chem.*, 1962, vol. 36, p. 539.
- 19. Taylor, E.C. and Crovetti, A.J., J. Org. Chem., 1954, vol. 19, p. 1633.
- Suszko, J. and Szafran, M., *Roczn. Chem.*, 1965, vol. 39, p. 709.
- 21. Kubota, T., J. Pharm. Soc. Jpn., 1954, vol. 74, p. 831.
- 22. Chmurzynski, L., Molecules, 1997, vol. 2, p. 169.
- Ponomarenko, S.P., Borovikov, Yu.Ya., Kukhar', V.P., Makovetskii, V.P., and Borovikov, S.Yu., *Russ. J. Gen. Chem.*, 1998, vol. 68, p. 1271.
- 24. Huyskens, P., Sobczyk, L., and Majerz, I., J. Mol. Struct., 2002, vol. 615, p. 61.
- 25. Dega-Szafran, Z., Katrusiak, A., Szafran, M., and Tykarska, E., *J. Mol. Struct.*, 1999, vol. 484, p. 49.

- 26. Garvey, R.G., Nelson, J.N., and Ragsdale, R.O., *Coord. Chem. Rev.*, 1968, vol. 3, p. 375.
- Dega-Szafran, Z., Grundwald-Wyspiańska, M., Kania, A., Kosturkiewicz, Z., Tykarska, E., and Szafran, M., *J. Mol. Struct.*, 1995, vol. 356, p. 169.
- Hanuza, J., Mączka, M., Waskowska, A., Oganowski, W., Ban-Oganowska, H., Lutz, E.T.G., and van der Maas, J.H., *J. Mol. Struct.*, 1998, vol. 450, p. 201.
- 29. Kulevsky, N. and Sveum, L., J. Inorg. Nucl. Chem., 1965, vol. 27, p. 2111.
- 30. Gates, P.N. and Mooney, E.F., J. Inorg. Nucl. Chem., 1968, vol. 30, p. 839.
- 31. Andreev, V.P. and Ryzhakov, A.V., *Khim. Geterotsikl.* Soedin., 1994, p. 1087.
- 32. Kida, S., Quagliano, J.V., Walmsley, J.A., and Tyree, S.Y., *Spectrochim. Acta*, 1963, vol. 19, p. 189.
- Gordon, A.J. and Ford, R.A., *The Chemist's Companion*, New York: Wiley, 1972. Translated under the title *Sputnik khimika*, Moscow: Mir, 1976, p. 443.
- 34. Burg, A.B. and Bickerton, J.H., J. Am. Chem. Soc., 1945, vol. 67, p. 2261.